Continental crust generated in oceanic arcs
نویسندگان
چکیده
Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intraoceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10Myr ago—coincident with the onset of subduction of more oceanic crust that originally formed above the Galápagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone—a process probably more common in the Archaean—can produce juvenile continental crust.
منابع مشابه
Controls on Tectonic Accretion versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust
[1] Documenting the mass flux through convergent plate margins is important to the understanding of petrogenesis in arc settings and to the origin of the continental crust, since subduction zones are the only major routes by which material extracted from the mantle can be returned to great depths within the Earth. Despite their significance, there has been a tendency to view subduction zones as...
متن کاملAdvent of Continents: A New Hypothesis
The straightforward but unexpected relationship presented here relates crustal thickness to magma type in the Izu-Ogasawara (Bonin) and Aleutian oceanic arcs. Volcanoes along the southern segment of the Izu-Ogasawara arc and the western Aleutian arc (west of Adak) are underlain by thin crust (10-20 km). In contrast those along the northern segment of the Izu-Ogasawara arc and eastern Aleutian a...
متن کاملContinental crust formation at arcs, the arclogite ‘‘delamination’’ cycle, and one origin for fertile melting anomalies in the mantle
The total magmatic output in modern arcs, where continental crust is now being formed, is believed to derive from melting of the mantle wedge and is largely basaltic. Globally averaged continental crust, however, has an andesitic bulk composition and is hence too silicic to have been derived directly from the mantle. It is well known that one way this imbalance can be reconciled is if the paren...
متن کاملChemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust
The average chemical compositions of the continental crust and the oceanic crust (represented by MORB), normalized to primitive mantle values and plotted as functions of the apparent bulk partition coefficient of each element, form surprisingly simple, complementary concentration patterns. In the continental crust, the maximum concentrations are on the order of 50 to 100 times the primitive-man...
متن کاملConstraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents
Arc magmas and the continental crust share many chemical features, but a major question remains as to whether these features are created by subduction or are recycled from subducting sediment. This question is explored here using Th/La, which is low in oceanic basalts (<0 2), elevated in the continents (>0 25) and varies in arc basalts and marine sediments (0 09–0 34). Volcanic arcs form linear...
متن کامل